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Martinez-Rojas MA, Vega-Vega O, Bobadilla NA. Is the kidney a target of
SARS-CoV-2? Am J Physiol Renal Physiol 318: F1454–F1462, 2020. First
published May 15, 2020; doi:10.1152/ajprenal.00160.2020.—The new disease
produced by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2)
represents a major pandemic event nowadays. Since its origin in China in Decem-
ber 2019, there is compelling evidence that novel SARS-CoV-2 is a highly
transmissible virus, and it is associated to a broad clinical spectrum going from
subclinical presentation to severe respiratory distress and multiorgan failure. Like
other coronaviruses, SARS-CoV-2 recognizes human angiotensin-converting en-
zyme 2 as a cellular receptor that allows it to infect different host cells and likely
disrupts renin-angiotensin-aldosterone system homeostasis. Particularly, a consid-
erable incidence of many renal abnormalities associated to COVID-19 has been
reported, including proteinuria, hematuria, and acute kidney injury. Moreover, it
has been recently demonstrated that SARS-CoV-2 can infect podocytes and tubular
epithelial cells, which could contribute to the development of the aforementioned
renal abnormalities. In this review, we discuss the biological aspects of SARS-
CoV-2 infection, how understanding current knowledge about SARS-CoV-2 infec-
tion may partly explain the involvement of the kidneys in the pathophysiology of
COVID-19, and what questions have arisen and remain to be explored.
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INTRODUCTION

Since 2003, severe acute respiratory syndrome (SARS)
caused by different viral agents has been recognized as a
clinical entity of great epidemiological concern, because it can
be fatal (4, 22). In December of 2019, Zhu et al. (87) reported
a cluster of patients with pneumonia of unknown etiology
linked to the seafood market in Wuhan, China; since that
moment, a novel coronavirus, SARS-coronavirus 2 (SARS-
CoV-2) was isolated and identified. The infection spread
rapidly in and out of China, and the World Health Organi-
zation declared a global emergency on January 31, 2020; 11
days afterward, it announced the name for the new corona-
virus disease as coronavirus disease 2019 (COVID-19) be-
cause of its appearance last year. On March 11, 2020, the
World Health Organization declared that the COVID-19
outbreak was considered a pandemic, as there were already
more than 118,000 reported cases, of which 40,000 were
diagnosed in 114 countries outside of China, with 4,291
deaths (https://bit.ly/2xiAO2B). As of April 13, 2020,

SARS-CoV-2 has spread widely around the world, affecting
213 countries/regions, with more than 1,773,000 confirmed
cases and more than 111,000 deaths attributed to this virus
(https://bit.ly/34A85Ct).

Here, we review the biological aspects of SARS-CoV-2
infection, how understanding current knowledge about SARS-
CoV-2 infection may partly explain the involvement of the
kidneys in the pathophysiology of COVID-19, and what ques-
tions have arisen and remain to be explored.

COVID- 19 (SARS-COV-2) BIOLOGY

Structural Characteristics

Human coronaviruses are enveloped positive-stranded RNA
viruses of the order Nidovirales. There are seven different
coronaviruses known that possess the ability to infect human
cells; some of them cause mild upper respiratory symptoms,
and others are potentially fatal. SARS-CoV-2 is a lineage B
betacoronavirus known to cause severe respiratory disease
(16). It has multiple transmembrane glycoproteins, named
Spike (S), which mediate molecular interactions with the host
(69). S glycoproteins comprise two functional subunits: S1,
which mediates host receptor binding to angiotensin-convert-
ing enzyme 2 (ACE2), and S2, which is responsible for viral
and cellular membrane fusion (74, 75). The S protein has a
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novel polybasic furin cleavage site at the S1-S2 boundary,
which is the target of intense glycosylation in a mucin-like
domain and may mediate a wider tropism within the organism
(2). The receptor-binding domain (RBD) located in S1 is the
most variable part of the coronavirus genome; in SARS-
CoV-2, critical amino acids (L455, F486, Q493, S494, N501,
and Y505) confer the RBD a high affinity for the extracellular
domain of human ACE2 (75), which could have resulted from
natural selection directly on a human host or on other mammals
with human-like ACE2 (86).

SARS-COV-2 ONTOGENY

The epidemic outbreak of COVID-19 is estimated to have
emerged between the end of November and the beginning of
December 2019. There are two possible scenarios that could
explain the origin of the virus, which have been discussed
previously by Andersen et al. (2) and are briefly described
below.

Natural Selection Before Zoonotic Transfer

Early cases in the Huanan seafood wholesale market support
the notion of a common animal source. It is expected that bats
(Rhinolophus affinis) served as a reservoir host for a potential
progenitor virus (RaTG13), which has 96% identity with
SARS-CoV-2 (86), but it exhibits important differences in the
RBD (75). Malayan pangolins (Manis javanica) are other
possible reservoir or intermediate hosts for the SARS-CoV-2
ancestor, because some pangolin betacoronaviruses have closer
similarities within their RBD (2). An important finding against
this hypothesis is that both RaTG13 and pangolin coronavi-
ruses lack a polybasic furin cleavage site, while it is found in
other less-related coronaviruses. The acquisition of both the
polybasic cleavage site and the affinity to its host receptor
ACE2 through the RBD may be an example of convergent
evolution due to mutations within a high population density of
the host involved (18).

Natural Selection in Humans After Zoonotic Transfer

Given the similarity of the RBD of pangolin coronavirus
to that of SARS-CoV-2, an alternative hypothesis could
be justified, where the first human transmissions were
through many zoonotic events and the new acquisition of
the polybasic cleavage site in SARS-CoV-2 would support
the notion of a mutation just before human-to-human trans-
mission. These short transmission chains were seen in the
Middle East respiratory syndrome-coronavirus out-
break (23).

MECHANISMS OF CELLULAR INFECTION BY SARS-COV2

COVID-19 has a broad clinical spectrum; most of the
studies published to date have revealed the lungs as the main
organs affected in the disease, while a smaller number of
studies have reported the involvement of other organs like
the gastrointestinal system, bone marrow, liver, heart, and
kidney, among others (33, 41, 83). This multiorgan involve-
ment could be linked to the wide distribution of ACE2,
which is the molecular receptor that allows host cell infec-
tion by SARS-CoV-2 (49, 83).

The presence of ACE2, specifically in type II pneumocytes
together with the expression of viral process-related genes in
these cells, suggests that the lungs are the primary sites of entry
for SARS-CoV-2 in the body (85). However, the presence of
ACE2 in enterocytes and the oral mucosa can explain the
fecal-oral transmission route (32, 81).

After host exposure to SARS-CoV-2, the virus recognizes
the NH2-terminal peptidase domain of ACE2 at the surface
of the cell membrane using S domain B (SB) (74, 82). To
accomplish this, S1 needs to form homotrimers with a
partially opened apex conformation, something that is
thought to be a pathogenic characteristic of all human
coronaviruses. After binding to ACE2, S is cleaved by host
furin-like protease, such as plasmin (36), specifically at the
named S2= site; this process activates S2 for membrane
fusion by inducing conformational changes that expose the
internal fusion heptad repeat peptides (HR1 and HR2),
bringing viral and cellular membranes to close proximity.
The eventual fusion is shown in Fig. 1 (6, 47). The presence
of the furin polybasic cleavage site at the S1/S2 boundary
may expand tropism due to the near-ubiquitous distribution
of furin-like proteases (74). In addition, endosomal cell
entry of SARS-CoV-2 is facilitated by a low pH and
pH-dependent endosomal cysteine protease known as ca-
thepsin (89). There is evidence that endosomal acid pH is
crucial for the processing and internalization of SARS-CoV.
Based on this, it has been proposed that the antimalarial
drug chloroquine could increase endosomal pH, since chlo-
roquine is known to protonate quickly and concentrate in
endosomes, which prevents the fusion of the virus to the
endosome and could exert a successful antiviral effect
against SARS-CoV-2 (72). So far, there is only rational
evidence to justify chloroquine treatment, backed by con-
sensus expert opinion; however, the evidence is weak and
rigorous clinical trials are still needed (17).

After entering to the cytosol, the SARS-CoV-2 RNA begins
the translation of its replicase and structural proteins, exploit-
ing the endogenous transcriptional machinery of the infected
cell to generate new virions and spread throughout the infected
organ. According to a previous study on SARS-CoV, genome
replication and virion assembly would occur within double
membrane vesicular arrangements of the endoplasmic reticu-
lum (ER) and the Golgi complex just before viral release (Fig.
1) (58).

ACE2: PHYSIOLOGY AND DISTRIBUTION

ACE2 is a type I transmembrane protein with carboxypep-
tidase activity that was described in 2000 by two different
groups, Tipnis et al. (67) and Donoghue et al. (21). The main
targets of ACE2 are angiotensin I and angiotensin II peptides.
Although there are other peptides subjected to ACE2 proteol-
ysis, such as neurotensin 1–13, apelin 13, dynorphin 1–13, and
some of kinin metabolites, it exhibits the highest affinity for
angiotensin II. Angiotensin I (decapeptide) is typically con-
verted to angiotensin II (octapeptide) by ACE1, whereas ACE2
inactivates both peptides by converting them to angiotensin
1–9 and angiotensin 1–7, respectively (21, 67, 71). Full-length
ACE2 consists of the NH2-terminal peptidase domain (PD) and
a COOH-terminal collectrin-like domain (CLD) that ends with
a single transmembrane helix and a short cytosolic segment.
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Interestingly, in polarized cells, ACE2 is exclusively located in
the apical membrane (32).

Originally, ACE2 was thought to be exclusively expressed
in the heart, kidneys, and testes (21). However, studies in
humans and mice have demonstrated ACE2 expression in most
organs, with the highest activity in the ileum and kidney
followed by type I and type II pneumocytes, adipocytes, heart,
brain stem, small intestine enterocytes, stomach, liver, vascu-
lature, and nasal and oral mucosa (28, 81, 88). Despite its wide
distribution, the physiological significance of ACE2 expression
in most of these tissues remains elusive. In general, ACE2
contributes to balance angiotensin II activity in both systemic
and local scenarios.

In the kidney, ACE2 is present in podocytes, mesangial
cells, parietal epithelium of Bowman’s capsule, proximal cell
brush border, and collecting ducts (3, 32, 40, 84). Several
models of nephropathy have shown that ACE2 is implicated in
reducing glomerular and tubular damage as well as fibrosis (43,
48, 63, 84). In this regard, male mice developed age-dependent
glomerulosclerosis and albuminuria in the absence of the Ace2
gene, which was effectively reverted with angiotensin II type 1
receptor blockers, supporting the role of ACE2 in angiotensin II
equilibrium (51). Noteworthy, pharmacological blockade of the
renin-angiotensin-aldosterone system (RAAS) increases both car-
diac and renal ACE2 activity (35). ACE2 was first recognized as
a viral receptor after the SARS epidemic in 2003 (42).
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Fig. 1. Cellular infection by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2). The virus recognizes human angiotensin-converting enzyme 2
(hACE2) in the apical membrane of type II pneumocytes with domain B of S1 in the protein Spike (S). It can then take the endocytic pathway or the plasma
membrane pathway. In the former, the virion is internalized in a phagosome, where S suffers proteolysis by host proteases, which generates conformational
changes that expose the fusion peptides HR1 and HR2 located within S2. In the plasma membrane pathway, proteases with extracellular domain cleave S outside
the cell immediately after the binding to ACE2. When HR1 and HR2 are exposed, whether inside the phagosome or in the plasma membrane, they mediate the
fusion of host and virion membranes, allowing the release of viral RNA into the cytosol and the early expression of viral genes. Some of these viral proteins
are thought to induce the formation of a reticular complex originated from the endoplasmic reticulum. This complex and the double-membrane vesicles inside
it constitute the molecular factory of new virions. After assembly of the different components of the newly formed virions, they are secreted outside cell, and
the cycle begins once again.
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CLINICAL COURSE OF COVID-19

SARS-CoV-2 is more contagious than previous coronavi-
ruses known, because of its greater binding affinity to ACE2
(79), but produces less severe cases than other SARS-causing
viruses (4, 22, 41). The median incubation period is around 4
days, but it can be as long as 12 days according to early reports.
Transmission appears to be independent of clinical presenta-
tion and is best correlated with viral load, which peaks at 10
days after symptom onset (41).

Early experience from China confirmed male predominance
in incidence (58%) compared with female. The most common
symptoms were fever (88.7%) and cough (67.8%), and the
most common radiological finding on admission were ground
glass opacity (56.7%) and bilateral patchy shadowing in the
lungs (51.8%) (33). Other common symptoms, especially in
deceased patients, included fatigue, dyspnea, chest tightness,
and sputum production, whereas less common symptoms in-
cluded anorexia, diarrhea, and myalgia (12). Between 16% to
20% of cases are severe or critical, and 61.5% of this group
died after 4 wk (33, 83). Patients with diabetes, hypertension,
coronary heart disease, chronic obstructive pulmonary disease,
cerebrovascular disease, and kidney disease exhibited worse
clinical outcomes when infected with SARS-CoV-2 (45).

According to the European Centre for Disease Prevention
and Control, the evidence from analyses of cases showed that
80% of patients with COVID-19 had mild disease, without
pneumonia or with mild pneumonia, most of whom recover
spontaneously. In contrast, 14% of infected patients experi-
enced a more severe form of the disease, and 6% became
critically ill (31).

Acute kidney injury (AKI) is infrequent in the context of
mild to moderate SARS-CoV-2 infection (5%); in these pa-
tients, the most common kidney abnormalities are subclinical.
Interestingly, a recent prospective study including 701 patients
with moderate or severe disease showed that 43.9% exhibited
proteinuria and 26.7% hematuria at hospital admission, while
around 13% presented elevated levels of either serum creati-
nine, blood urea nitrogen, or both (13). During hospitalization,
AKI occurred just in 5.1% of SARS-CoV-2-infected patients.
All these kidney abnormalities had a significantly higher risk of
in-hospital death: proteinuria 1� (1.8, 0.81–4.0), proteinuria
2� to 3� (4.84, 2.0–11.7), hematuria 1� (2.99, 1.39–6.42),
and hematuria 2� to 3� (5.5, 2.5–12.0) after adjusting for age,
sex, disease severity, comorbidity, and leukocyte counts (13).

Recent evidence shows that AKI is more common in criti-
cally ill patients with COVID-19. Accordingly, in 52 critically
ill patients admitted to the intensive care unit in Wuhan, China,
AKI was the most common extrapulmonary complication,
present in 15 patients (29%), more common than cardiac injury
(23%) and liver dysfunction (23%). Of all patients with AKI,
8 patients (25%) needed continuous renal replacement therapy
and 12 patients (80%) died with a median duration from
intensive care unit admission to death of 7 days (interquartile
range: 3–11) (83).

All together, this suggest that kidney abnormalities are more
common than expected and are associated with higher mortal-
ity, even when they are present as subclinical manifestations,
and when they are clinically relevant, this leads to even greater
lethality.

KIDNEY ABNORMALITIES INDUCED BY SARS-COV-2:
POTENTIAL INVOLVEMENT OF ACE2 PATHOPHYSIOLOGY

A previous study (56) on SARS-CoV infection showed that
the virus RNA is effectively detected in urine 10 days after the
onset of symptoms, and the excretion gradually decreased until
day 21; unfortunately, it has not been studied in SARS-CoV-2
yet. Autopsies of SARS-CoV-confirmed patients demonstrated
the virus presence in tubular epithelial cells by immunohisto-
chemistry and in situ hybridization (20). In addition, 35% of
heart specimens from SARS-CoV-infected patients revealed
the coexistence of viral RNA and reduced ACE2 protein
expression (52). A retrospective study during the SARS-CoV
outbreak found that only 6% of SARS-CoV-infected patients
exhibited AKI (15). However, AKI was a fatal complication of
SARS, given that almost 92% of patients with SARS with AKI
died. This study also evaluated whether active replication of
SARS-CoV existed in the tubular cells of postmortem patients
infected with SARS-CoV by analyzing the presence of viral
particles using electron transmission microscopy. The authors
found that SARS-CoV was not detectable in any of the ana-
lyzed samples and suggested that renal impairment was likely
related to multiorgan failure (15). This study suggested that
AKI in patients with SARS-CoV could be the result of cyto-
kine release syndrome (CRS) (68) rather than active viral
replication in the kidney.

In contrast to the previous studies with SARS-CoV-infected
patients, recent studies have reported that the human kidney is
a specific target for SARS-CoV-2 infection (19, 25, 53, 66). In
fact, Diao et al. (19) examined viral nucleocapsid protein in the
kidney of postmortem patients and found that SARS-CoV-2
antigens accumulated in renal epithelial tubules, suggesting
that SARS-CoV-2 infects the human kidney directly, which
leads to kidney dysfunction and contributes to viral spreading
in the body. The difference between the higher renal tropism of
SARS-CoV-2 versus SARS-CoV could be explained by the
increase affinity of SARS-CoV-2 for ACE2, allowing greater
viral load in several organs, and especially into the kidney,
which may act as viral reservoir (57). An additional study of 26
autopsies found virus particles characteristic of SARS-CoV-2
in the proximal tubular epithelium and podocytes by electronic
microscopy (66). This finding was associated with foot process
effacement and occasional vacuolation and detachment of
podocytes from the glomerular basement membrane (66).

These findings, along with the consensual physiological role
of ACE2 in the kidneys, raise the possibility of a complex
multifactorial pathophysiology explaining kidney abnormali-
ties in COVID-19, involving a direct cytopathic effect of the
virus, a local disruption in RAAS homeostasis, and a systemic
inflammatory response to infection, as shown in Fig. 2.

The most frequent finding of kidney dysfunction in patients
with COVID-19 is mild to moderate proteinuria (13). Just a
little fraction of plasma proteins is filtered in the renal glom-
eruli, and most of them are effectively reabsorbed in the
proximal tubule, so that basically no proteins appear in normal
urine. The glomerular filtration barrier depends on adequate
function of its three components: endothelial cells, the glomer-
ular basement membrane, and podocytes (9). Podocytes are
known to be particularly sensitive to RAAS homeostasis, with
angiotensin-1–7 being the most abundant product, probably
due to the specific expression of ACE2 in this region (70). If a
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pathological process increases glomerular levels of angiotensin
II, podocytes acquire a dysfunctional phenotype mediated by
cellular responses to this octapeptide due to shear stress and
resulting in single nephron hyperfiltration. This phenotype
involves Ca2� signaling, cytoskeleton restructure, and nephrin
internalization, which finally is manifested by proteinuria (38,
65). The actual tropism of SARS-CoV-2 to podocytes has been
recently determined, and it is reasonable to hypothesize that
proteinuria is a partial consequence of direct podocyte infec-
tion with potential RAAS alterations, which together would
affect the glomerular filtration barrier and result in increased
filtration of plasmatic proteins.

Tubular injury can also increase renal protein excretion,
usually in a mild intensity. Interestingly, patients with
COVID-19 with elevated serum creatinine at admission exhib-
ited a higher incidence of moderate proteinuria compared with
those with normal serum creatinine (30.2% vs. 7.5%) (13).
However, there is no evidence that this depends on a disturbed
RAAS and actually relies on the proximal tubule cell response
to injury, including the transient loss of polarity and cell death
(7, 54).

The incidence of AKI in SARS-CoV-2-infected patients has
been variable, and it has been found predominantly in critically
ill patients (77, 83). This rises important considerations to take
into account for COVID-19-associated AKI pathogenesis. It
has been reported that patients in the intensive care unit have
higher levels of IL-1�, IL-8, interferon-�, and TNF-�, among
other cytokines, compared with noncritically ill patients (33).

This suggest a potential role of CRS, also named as “cytokine
storm,” comparable with sepsis-associated AKI, where the
uncontrolled systemic inflammatory response leads to kidney
dysfunction. The occurrence of CRS in COVID-19 has been
documented since the first reports of the disease (33, 80). In
patients with CRS, AKI might occur as a result of intrarenal
inflammation, increased vascular permeability, and volume
depletion, which is translated in the findings of autopsies of
erythrocyte aggregates obstructing the lumen of capillaries
without platelet or fibrinoid material. Proinflammatory IL-6 is
considered to be the most important causative cytokine in CRS.
Among patients with COVID-19, the plasma concentration of
IL-6 is increased in those with acute respiratory distress syn-
drome (80). The anti-IL-6 monoclonal antibody tocilizumab is
widely used to treat CRS in patients who have undergone
chimeric antigen receptor T cell therapy, and it is now also
being used empirically in patients with severe COVID-19 (50).
However, there is no consensual recommendation for or
against tocilizumab treatment, and ongoing clinical trials will
determine the utility of this treatment (1). Extracorporeal
therapies have also been proposed as approaches to remove
cytokines in patients with sepsis and could potentially be
beneficial in critically ill patients with COVID-19 (29). The
rational use for these therapies is that cytokine removal could
prevent CRS-induced organ damage (61, 62).

Moreover, studies on SARS-CoV confirmed tropism to
monocytes and lymphocytes, where the virus induces proin-
flammatory responses and cell death, and all of them could
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Fig. 2. Possible mechanisms of kidney damage by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2). Angiotensin-converting enzyme 2 (ACE2)
expression in podocytes makes the glomerulus a direct target of SARS-CoV2 infection, leading to podocyte vacuolation, foot process effacement, and cell
detachment. In addition, the occupation of ACE2 by SARS-CoV-2 could prevent angiotensin II clearance, which could contribute even more to podocyte
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hACE2, human ACE2; AT1R, angiotensin II type 1 receptor; AKI, acute kidney injury.
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potentially take place during COVID-19 (26, 30). In addition,
it is well known that an imbalance in components of the RAAS
can contribute to kidney injury by changing renal hemodynam-
ics, altering tubular handling of electrolytes with a higher
metabolic demand, and inducing proinflammatory phenotypes
in both epithelial and immune cells. It is highly probable that
this imbalance could contribute to the renal dysfunction ob-
served in severe patients with COVID-19, which could also be
accompanied by a decrease in ACE2 activity (8, 46, 60). It has
become clearer that sepsis-associated AKI is multifactorial,
involving the kidney inflammatory response, microcirculatory
dysfunction, and metabolic reprogramming with mitochondrial
injury (55). These mechanisms are compatible with our current
understanding of SARS-CoV-2 infection and biology, support-
ing the prevailing hypothesis that COVID-19-associated AKI
takes place in a severe disease scenario with a complex
pathophysiological network, but, in contrast to other SARS-
related viruses (14), SARS-CoV-2 direct infection of the prox-
imal epithelium could importantly support a causal relationship
in AKI development (66).

Finally, the finding of hematuria in at least 20% of infected
patients raises a clinical concern. There are several causes of
hematuria, including both kidney damage and extrarenal ab-
normalities, and to address them it is necessary to evaluate
carefully urine sediment (78). Unfortunately, to our knowl-
edge, hematuria has only been reported as a general finding,
without exploring its characteristics (2a, 13). There are many
possible explanations of hematuria in COVID-19, including
coagulopathy, kidney inflammation, and glomerular barrier
disruption (as previously discussed) (83). However, the infor-
mation available makes it very difficult to propose an accept-
able hypothesis.

IMPACT OF COVID-19 IN PATIENTS WITH PREEXISTING
CHRONIC KIDNEY DISEASE

Patients with chronic kidney disease (CKD) require special
attention and even more so in the course of this pandemic. In
fact, there was a worldwide concern around the use of renin-
angiotensin system inhibitors because they could upregulate
ACE2 expression in patients with type 2 diabetes and hyper-
tension, both conditions commonly found in patients with
CKD (24, 64). Fortunately, recent studies have provided
enough evidence showing that in patients treated with renin-
angiotensin system inhibitors, there is not greater risk of
SARS-CoV-2 (44, 59). However, patients with CKD, and
especially those with end-stage renal disease and with renal
replacement therapy, are known to have impaired immune
function, and this could contribute to greater SARS-CoV-2
infection susceptibility (34). Additionally, kidney transplant
recipients, who receive immunosuppressant therapy, may have
a particular risk of acquiring COVID-19 (15a).

Early reports in China described preexisting CKD in only
0.7% of all patients with COVID-19, while the prevalence was
of 1.7% in patients with severe pneumonia (31). However,
several dialysis centers have reported COVID-19 outbreaks
affecting more than 10% of patient with end-stage renal disease
and 6% of the medical staff (27, 37, 76). Since then, there have
been specific protocols proposed to mitigate the transmission
of SARS-CoV-2 in these medical units (39). Interestingly,
patients with end-stage renal disease and COVID-19 are more

likely to die of cardiovascular complications than of pneumo-
nia (76). Finally, in addition to the possible contributors of
kidney dysfunction during active COVID-19 previously dis-
cussed, preexistent CKD is a known independent risk factor to
develop AKI; this could worsen the expected outcomes of
these patients and may involve many pathophysiological mech-
anisms dependent on comorbidities (10).

Perspectives

Today, we are facing what could represent the greatest
pandemic event in human history; fortunately, we are living in
a new era of communication, where every character of the
scientific community can access the latest data regarding this
novel disease and contribute by actively exploring possible
solutions against SARS-CoV-2. As we discussed before,
COVID-19 has a broad clinical spectrum involving many vital
organs, including the kidney, representing a significant threat
to survival. Intense research in ACE2 involvement in SARS-
CoV-2 infection is critical to understand better COVID-19, not
only because of its actual role as viral receptor but also because
of its physiological contribution to RAAS homeostasis. Battle
et al. (5) have proposed the potential benefit of using soluble
recombinant ACE2 to trap SARS-CoV-2 and thereby reduce or
prevent infection of cells that express ACE2 on their mem-
brane. This hypothesis has attracted the attention of several
scientists, and, now, a clinical trial is underway in China
(NCT04287686). Other topics that are mandatory to address
are 1) whether SARS-CoV-2 infection modifies tissue ACE2
expression; 2) if this were the case, a reduction in ACE2
expression could result from cellular death induced by SARS-
CoV-2 infection by itself or an altered transcriptional mecha-
nism; 3) whether treatment with converting enzyme inhibitors
or angiotenin receptor blockers during active COVID-19 mod-
ifies the expression of ACE2; 4) whether patients with chronic
diseases have higher expression of ACE2 and plasminogen and
therefore have greater susceptibility to infection; and 5) finally
find out whether the course of SARS-CoV-2 infection is
modified in patients with chronic diseases who have higher
levels of circulating soluble ACE2.

The recent demonstration of SARS-CoV-2 infection in
podocytes and proximal epithelial cells provides new insights
that allow us to better understand the pathophysiology of
kidney damage by COVID-19 and, therefore, guide a rational
approach to possible therapeutic strategies. However, several
lines of research in other organs (11) provide evidence sug-
gesting that the kidneys contribute partially in the complex
pathophysiological network involved in COVID-19, and we
still need to explore how other cell types, like pericytes,
endothelium, and interstitial cells, are involved in the estab-
lishment and maintenance of kidney dysfunction during
COVID-19.
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